

Interconnected – Highly Utilized Grid: New Operation Paradigms

Program Director: Dr. Sonja Glavaski

Outline

- US Grid is Changing
- Grid & Renewables
- What's Next
- Workshop Objectives & Agenda

ARPA-E Mission

Ensure the U.S. maintains a lead in the development and deployment of advanced technologies

US Consumers Want Renewables!

Corporate Sourcing of Renewables Campaign

1,000 world's most influential businesses 100% powered by renewables

- Decarbonize 10% of all electricity used worldwide
- Cut more than 1,000 Mt of CO₂ per year

Enable corporate purchasing of renewable energy Further unlock corporate renewable energy demand

Provide funding to Renewable Energy Buyers Alliance
Develop green tariffs
50% renewable sources by 2018

Power data centers with at least 50% renewables by 2018 60% renewables early next decade

Maintain 100% carbon neutrality

Encourage procurement of renewable energy Install more than 4GW of renewables worldwide by 2020

Outline

- US Grid is Changing
- Grid & Renewables
- What's Next?
- Workshop Objectives & Agenda

Grid of the Future: Nationwide Green Power Super Highway

"Like the Internet, the modern electricity grid serves as the backbone upon which a generation of technologies, services, and economies will be built."

"Five Principles for Tomorrow's Electricity Sector", Jenny Hu, Shayle Kann, James Tong & Jon Wellinghoff

FIGURE 1: Nationwide Green Power Superhighways: A Conceptual Vision

Features of the Grid of the Future

Long Term Objectives

Maximize utilization of T&D infrastructure

Maximize deployment of renewables and DERs

Minimize investments into building new T&D power lines

Outline

- US Grid is Changing
- Grid & Renewables
- What's Next?
- Workshop Objectives & Agenda

Challenges with Renewables Grid Integration

Renewables penetration is limited (< 30%) because of lack of capability to reliably and affordably manage its variability

With high grid infrastructure utilization >50% renewable integration is possible.

Grid Utilization

- How can we improve grid infrastructure utilization?
 - Would a more interconnected US grid help with utilization?
 - Would tight integration of Transmission & Distribution help with utilization?

TRANSMISSION NETWORKS

DISTRIBUTION

Generates electricity.

Transports electricity over long distances.

Transports electricity to its final destination.

SUBSTATION

Raises the voltage of the electricity for efficient transportation.

SUBSTATION TRANSFORMER

Lowers the voltage of the electricity ready to deliver for everyday use.

HOMES AND

Electricity is used to power our everyday life including appliances, lighting and heating.

https://www.originenergy.com.au

Road to Grid with >50% Renewables

Optimize the grid's "Backbone" and "Edge" to enable large scale (>50%) deployment of renewables and DERs

BACKBONE

Optimize transmission capacity and effectively dispatch renewables over long distances and across balancing areas to better leverage spatio-temporal diversity in variable generation and loads

EDGE

Effectively integrate Transmission and Distribution to enable greater utilization of DERs and DG

Optimizing Grid 'Backbone'- Transmission Capacity

Grid Interconnections

Plan Interconnected Grid

- Simulate the entire grid
- Correlate wind/solar generation & consumer demand patterns across the regions and "balancing" areas
- Optimize location and sizing of new grid assets (power lines, generation, storage, ...)

Operate Interconnected Grid

- Monitor transmission power lines and equipment utilization
- Dynamically change transmission power lines and equipment ratings
- Move large amounts of renewable power across long distances
- Coordinate regional operations

Optimizing Grid "Edge" – T&D Integration

Integrate the Grid Edge

Plan T&D jointly

- Incorporate local resources into broader area analysis
- Determine optimal location and sizing of DERs
- Account for flexible net-load shapes over different time scales

Operate T&D jointly

- Dispatch distributed generation in coordination with bulk generation
- Coordinate flexible loads & DERs with bulk generation & storage
- Coordinate consumers & power generation

Cost & Benefits

Business Models are Changing!

- DER providers to participate in CA-ISOs' wholesale markets
- Utilities shifting from "rates of return" on capital toward new performance-based and network-driven incentive models
- Utility as a platform that delivers services
 - Reflect grid usage in billing structure
 - PJM and ISO-NE raise prices in capacity markets
 - Net metering replacement tariff (NY)
 - Develop locational & performance-based services by DER
 - Large coal and nuclear plants retiring prematurely

Outline

- US Grid is Changing
- Grid & Renewables
- What's Next?
- Workshop Objectives & Agenda

Agenda: Day 1

9:30 AM - 9:50 AM **Guest speaker**

Dr. Jovan Bebic, GE

9:50 AM - 10:10 AM **Guest speaker**

Dr. Paul Denholm, NREL

10:10 AM - 10:40 AM **Coffee Break**

10:40 AM - 11:00 AM **Guest speaker**

Dale Osborn, MISO

11:00 AM – 11:20 AM **Guest speaker**

Dr. Santiago Grijalva, Georgia Institute of Technology

11:20 AM – 11:30 AM Breakout Sessions Overview

Dr. Sonja Glavaski, ARPA-E

11:30 AM – 12:30 PM Lunch

12:30 PM – 2:30 PM <u>Breakout Session: Optimizing Grid "Backbone"</u>

Breakout Rooms: Cabinet/Judiciary, Diplomat/Ambassador, Congressional, Old Georgetown

2:30 PM – 3:00 PM Break

3:00 PM – 4:30 PM Breakout Session: Business Models & Markets

Breakout Rooms: Cabinet/Judiciary, Diplomat/Ambassador, Congressional, Old Georgetown

4:30 PM – 5:00 PM Day 1 Wrap-Up & Plans for Next Day's Sessions

Dr. Sonja Glavaski, ARPA-E

Agenda: Day 2

9:00 AM – 9:15 AM Day 2 Welcome & Recap of Previous Day

Dr. Sonja Glavaski, ARPA-E

9:15 AM - 9:35 AM **Guest speaker**

Robert Sherick, Southern California Edison

9:35 AM – 9:55 AM **Guest speaker**

Ryan Hanley, Solar City

9:55 AM – 10:10 AM **Breakout Session Overview**

Dr. Sonja Glavaski, ARPA-E

10:10 AM - 10:30 AM Break

10:30 AM – 12:30 PM **Breakout Session: Optimizing Grid "Edge"**

Breakout Rooms: Cabinet/Judiciary, Diplomat/Ambassador, Congressional, Old

Georgetown

12:30 PM - 1:00 PM Lunch

1:00 PM – 2:00 PM Wrap-up Discussion and Closing Remarks

Dr. Sonja Glavaski, ARPA-E

Dr. Sonja Glavaski

Program Director

Advanced Research Projects Agency – Energy (ARPA-E)

U.S. Department of Energy

sonja.glavaski@hq.doe.gov 202-287-6146

www.arpa-e.energy.gov

NODES

Network Optimized Distributed Energy Systems

Mission

Reliably manage dynamic changes in the grid by leveraging flexible load and DERs' capability to provide ancillary services to the electric grid at different time scales.

Goals

- Enable renewables penetration at > 50%
- Improve overall grid efficiency and reliability
- Reduce CO₂ emissions (renewables[↑], reserves↓)
- · Increase penetration of DG

Project Categories	Response Time	Ramp Time	Duration
C1: Synthetic Frequency Reserves	< 2 sec	< 8 sec	> 30 sec
C2: Synthetic Regulating Reserves	< 5 sec	< 5 min	> 30 min
C3: Synthetic Ramping Reserves	< 10 min	< 30 min	> 3 hr

U.S. Energy Industry is Changing!

- California leading renewables energy sector and integration of Distributed Energy resources (DER) – 50% renewables by 2030
- NY Reforming the Energy Vision (REV) to increase renewables & DERs -Cut New York GHG emissions 40% by 2030
- Hawaii planning to use only renewable power within the next 30 years
- Vermont to source 75% of its energy from green sources within 17 years

